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ENCS 533 - Advanced Digital Design  

Lecture 3 

Behavioural and Structural descriptions in VHDL 
 

Introduction 

In the last lecture we looked at a way of writing behavioural descriptions in VHDL, 

saying what we want the device to be able to do. This type of design can be simulated 

(feeding data to its inputs, to see what its outputs would do) in order to verify that the 

description has the required behaviour. Once we are sure that the description is 

correct, then it can be synthesised, i.e. run through a program that will automatically 

generate hardware that fulfils the description. 

 

It is also possible to use VHDL to write structural descriptions, saying how we would 

connect together basic units (e.g. logic gates) to build our design. (The output of a 

synthesis tool, which builds a gate level netlist to implement our design, will often be 

of this form.) 

 

In this lecture, we will look a little deeper at behavioural descriptions, and then move 

on to look at how to write structural descriptions. 

 

An example 
Throughout this lecture we will be looking at the four-bit adder example introduced in 

lecture 1. 
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The four-bit adder is built up from four 1-bit full adders, which have the following 

behaviour: 

 

x y Carry in Sum Carry out 
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There are many ways to implement this. One possible way is shown below. 
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Behavioural description 
Suppose we want to write a behavioural description of the full adder. In order to do 

this, we must explain how we want the outputs of the design to relate to the inputs. 

One way is simply to use the truth table to describe the device, like this: 

 
LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

 

ENTITY fulladd IS 

    PORT ( x, y, cin: IN STD_LOGIC; 

        sum, cout: OUT STD_LOGIC); 

END ENTITY fulladd; 

 
ARCHITECTURE tedious_but_easy OF fulladd IS 

BEGIN 

 sum <= '0' WHEN x='0' AND y='0' AND cin='0' 

  ELSE '1' WHEN x='0' AND y='0' AND cin='1' 

  ELSE '1' WHEN x='0' AND y='1' AND cin='0' 

  ELSE '0' WHEN x='0' AND y='1' AND cin='1' 

  ELSE '1' WHEN x='1' AND y='0' AND cin='0' 

  ELSE '0' WHEN x='1' AND y='0' AND cin='1' 

  ELSE '0' WHEN x='1' AND y='1' AND cin='0' 

  ELSE '1' WHEN x='1' AND y='1' AND cin='1'; 

 cout <= '0' WHEN x='0' AND y='0' AND cin='0' 

  ELSE '0' WHEN x='0' AND y='0' AND cin='1' 

  ELSE '0' WHEN x='0' AND y='1' AND cin='0' 

  ELSE '1' WHEN x='0' AND y='1' AND cin='1' 

  ELSE '0' WHEN x='1' AND y='0' AND cin='0' 

  ELSE '1' WHEN x='1' AND y='0' AND cin='1' 

  ELSE '1' WHEN x='1' AND y='1' AND cin='0' 

  ELSE '1' WHEN x='1' AND y='1' AND cin='1'; 

END tedious_but_easy; 

 

This is easy and obvious, but also tedious. There are many neater ways to describe the 

behaviour. We could take inspiration from the gate level design of the full adder, and 

write this 

 
ARCHITECTURE simple OF fulladd IS 

BEGIN 

 sum <= cin XOR x XOR y; 

 cout <= ( x AND y ) OR ( cin AND x ) OR ( y AND cin ); 

END ARCHITECTURE simple; 
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This is much neater and nicer, but requires us to think a bit harder about how the 

outputs relate to the inputs. 

 

It’s important to realise that as far as a synthesis tool is concerned, both descriptions 

are the same thing. They simply say how the outputs relate to the inputs. The second 

architecture is not ordering the synthesis tool to use two XOR gates, 3 AND gates and 

an OR gate. It’s simply a shorthand for saying how the output relates to the inputs. 

The synthesis tool is free to do whatever it wants to find a circuit that has the same 

input-output relation. 

 

Local signals 
Now let’s look at a slight modification of our description. 
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We have given names to the internal nodes of the circuit (n1, n2, n3, n4). Once we 

have given them names, we are free to use them in our description. So here is a 

slightly different description 

 
ARCHITECTURE number3 OF fulladd IS 

    SIGNAL n1, n2, n3, n4: STD_LOGIC; 

BEGIN 

 n1 <= x XOR y; 

 sum <= cin XOR n1; 

 n2 <= x AND y; 

 n3 <= cin AND x; 

 n4 <= y AND cin; 

 cout <= n2 OR n3 OR n4; 

END ARCHITECTURE number3; 

 

This is basically the same as the simple architecture of fulladd, but this time we have 

used the local signals n1, n2, n3 and n4 as part of the description. In order to use the 

names, we have to declare that they exist, that they are signals, and that they carry 

logic values (e.g. ‘1’, ‘0’, ‘X’ and ‘U’) which means that they are of type 

STD_LOGIC. The declaration of local signals takes place between the 

ARCHITECTURE statement and the first BEGIN. 

 

The reason why they are called local signals is that they are “hidden” inside the full 

adder. Imagine that we place our full adder in a bigger system (e.g. the four bit adder): 
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The full adder’s inputs and outputs (i.e. the signals in its port map) are visible to other 

devices in the system. However, the local signals n1, n2, n3, n4 are buried inside the 

full adder and cannot be accessed by other devices in the system. 

 

How are statements processed? 
Let’s look again at the full adder circuit, and for the sake of clarity, we will now give 

names (g1…g6) to the gates. 
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Imagine that the signals x, y and cin are initially at zero. Looking through the circuit, 

we can see that n1, n2, n3, n4, sum and cout will all be at zero.  

 

Now imagine that x changes its value from 0 to 1. Let’s think through what happens 

next: 

• x is the input to three gates: g1, g3 and g4. These gates are potentially affected by 

the change, so we need to re-compute their outputs n1, n2, n3. 

• We also know that gates g2, g5 and g6, which don’t have x as an input, can’t be 

affected by this change, so there is no point to re-computing their outputs. 

• The new value of n1 is 1 (i.e. it changed) 

• The new value of n2 is 0 (i.e. it is unchanged) 

• The new value of n3 is 0 (i.e. it is unchanged) 

• n1 just changed, which means that any gate that has n1 as an input (i.e. g2) needs 

to have its output (sum) re-computed. 

• n2 and n3 didn’t change, so we don’t need to bother to examine any consequences 

in gate g6, which has n2 and n3 as inputs. 
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• The new value of sum is 1. 

• There are no more gates whose inputs have changed, so we can stop analysing the 

circuit now. 

 

The way that VHDL processes statements during simulation tries to capture the above 

thought process. 

 
 ARCHITECTURE number3 OF fulladd IS 

     SIGNAL n1, n2, n3, n4: STD_LOGIC; 

 BEGIN 

1  n1 <= x XOR y; 

2  sum <= cin XOR n1; 

3  n2 <= x AND y; 

4  n3 <= cin AND x; 

5  n4 <= y AND cin; 

6  cout <= n2 OR n3 OR n4; 

 END ARCHITECTURE number3; 

 

• All statements 1-6 are scanned simultaneously, waiting for a signal on the right 

hand side (RHS) to change. In the jargon of VHDL, a change to a signal is called 

an event. 

• When x changes from 0 to 1 (in the jargon of VHDL there is an event on x), 

statements 1, 3 and 4 are triggered and run. 

• Statement 1 computes a new value of n1. It changes from 0 to 1. There is an event 

on n1. 

• Statement 3 re-computes n2, but it still computes to 0. This is not a change, so 

there is no event on n2. 

• Similarly statement 4 computes a new value of n3. It is 0, which is not a change. 

• The consequences of the event on x have been full worked through (all statements 

where it appears on the RHS have been re-evaluated). So now we look for other 

events that need to be processed. There has been an event on n1. 

• Statement 2 has n1 on its RHS, so it is triggered into life and executes 

• A new value is computed for sum. It becomes 1, and an event has occurred on 

sum. 

• Any statement with sum on its RHS would triggered, but no statement has sum on 

its RHS. 

• There are no pending events, so there is nothing left to do. Finish processing. 

 

Concurrent processing 
Now we come to a very important point. Consider these two descriptions of the full 

adder: 

 
ARCHITECTURE number3 OF fulladd IS 

    SIGNAL n1, n2, n3, n4: STD_LOGIC; 

BEGIN 

 n1 <= x XOR y; 

 sum <= cin XOR n1; 

 n2 <= x AND y; 

 n3 <= cin AND x; 

 n4 <= y AND cin; 

 cout <= n2 OR n3 OR n4; 

END ARCHITECTURE number3; 
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ARCHITECTURE number4 OF fulladd IS 

    SIGNAL n1, n2, n3, n4: STD_LOGIC; 

BEGIN 

 sum <= cin XOR n1; 

 cout <= n2 OR n3 OR n4; 

 n1 <= x XOR y; 

 n2 <= x AND y; 

 n3 <= cin AND x; 

 n4 <= y AND cin; 

END ARCHITECTURE number4; 

 

Although they are written in a different order, they do exactly the same thing. Unlike 

programming languages such as C, which process lines in the order that they are 

written, VHDL normally monitors all statements at the same time, and executes a 

statement when one of its RHS values changes. This is called concurrent execution. 

 

Structural Description 

Earlier on, we looked at this behavioural description 
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ARCHITECTURE simple OF fulladd IS 

BEGIN 

 sum <= cin XOR x XOR y; 

 cout <= ( x AND y ) OR ( cin AND x ) OR ( y AND cin ); 

END ARCHITECTURE simple; 

 

We said that this is not ordering the synthesis tool to use two XOR gates, 3 AND 

gates and an OR gate. It’s simply a shorthand for saying how the output relates to the 

inputs. 

 

It is also possible to write VHDL that does explicitly construct the full adder from two 

XOR gates, 3 AND gates and an OR gate. This would be a structural description 

(since it is saying how we want to build up our design out of simpler components). In 

order to write a structural description, we first of all need to create a library of gates 

that we can use as building blocks. Here are descriptions of the and gate, the xor gate 

and the 3-input or gate. 

 
LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

 

ENTITY and2 is 

    PORT ( a, b: IN STD_LOGIC; c: OUT STD_LOGIC); 

END ENTITY and2; 
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ARCHITECTURE simple OF and2 IS 

BEGIN 

    C <= a AND b; 

END ARCHITECTURE simple; 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

 

ENTITY or3 is 

    PORT ( a, b, c: IN STD_LOGIC; d: OUT STD_LOGIC); 

END ENTITY or3; 

 
ARCHITECTURE simple OF or3 IS 

BEGIN 

    d <= a OR b OR c; 

END ARCHITECTURE simple; 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

 

ENTITY xor2 is 

    PORT ( a, b: IN STD_LOGIC; c: OUT STD_LOGIC); 

END ENTITY xor2; 

 

ARCHITECTURE simple OF xor2 IS 

BEGIN 

    C <= a XOR b; 

END ARCHITECTURE simple; 

 

Note that I have chosen the names and2, or3 and xor2 for the 2-input and 3-input or 

and 2-input xor gates. I could have chosen almost any name I liked, but I could not 

have called the AND gate “AND” because this is a protected keyword of the VHDL 

language. “AND” (and other words like BEGIN, END, ENTITY, etc.) are part of the 

VHDL language, and have a special meaning. VHDL does not allow you to use any 

of its keywords to use as names for your designs. 

 

The work library 

When you compile your designs they are placed into a library ready to be used by 

other designs. By default, the current working library is called work. 

 

The gate designs will be store in the library with the names 

• work.and2(simple) 

• work.or3(simple) 

• work.xor2(simple) 

The name is constructed from the library name followed by a point, then the entity 

name, then the architecture name. 

 

Structural descriptions 

Now that we have a library of gates available to us to use in our design, let’s look at a 

structural description of the full adder. 
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LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

 

ENTITY fulladd IS 

    PORT ( x, y, cin: IN STD_LOGIC; 

        sum, cout: OUT STD_LOGIC); 

END ENTITY fulladd; 

 

ARCHITECTURE structural OF fulladd IS 

    SIGNAL n1, n2, n3, n4: STD_LOGIC; 

BEGIN 

    g1:  ENTITY work.xor2(simple) PORT MAP (x,y,n1); 

    g2:  ENTITY work.xor2(simple) PORT MAP (n1,cin,sum); 

    g3:  ENTITY work.and2(simple) PORT MAP (x,y,n2); 

    g4:  ENTITY work.and2(simple) PORT MAP (x,cin,n3); 

    g5:  ENTITY work.and2(simple) PORT MAP (y,cin,n4); 

    g6:  ENTITY work.or3(simple) PORT MAP (n2,n3,n4,cout); 

END ARCHITECTURE structural; 
 

Each of the gates is defined by a statement providing  

• a name for the gate
1
 (I’ve chosen g1 … g6, but I could have chosen any name I 

like.) 

• the keyword ENTITY 

• the full name of the gate that I want to use 

• the keyword PORT MAP 

• a list of the wires that I am connecting to the inputs and outputs of the gate 

In the jargon of VHDL, each of these statements is called an instantiation. I have 

created two instances of the XOR gate, three instances of the AND gate and one 

instance of the OR gate. 

 

Positional association 
How does VHDL know which of the wires I am connecting to g1 are inputs and 

which are outputs? If we compare the instantiation 
 

    g1:  ENTITY work.xor2(simple) PORT MAP (x,y,n1); 

 

with the definition of the and gate 

 
ENTITY and2 is 

    PORT ( a, b: IN STD_LOGIC; c: OUT STD_LOGIC); 

END ENTITY and2; 

 

                                                
1 Strictly speaking, g1 is a statement label, but you can think of it as just providing a name for the gate. 
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We see that the first two signals in the port map are inputs and the third is the output. 

So the first two signals in the instantiation x and y will be attached to the inputs a and 

b, and the third n1 will be attached to the output c. This is called positional 

association. 

 

Named association 
If you prefer, you can explicitly tell VHDL how you want to connect up the wires in 

your design to the inputs and outputs of the gate, like this 

 
    g1:  ENTITY work.xor2(simple) PORT MAP ( a=>x, b=>y, c=>n1 ); 

 

This is called named association. With named association, the order doesn’t matter, 

so you could write the instantiation like this 

 
    g1:  ENTITY work.xor2(simple) PORT MAP (c=>n1, b=>y, a=>x ); 

 

How the statements are processed 
For the sake of clarity, let’s look again at the structural description, and highlight 

which of the signals are inputs to which gate. 

 
ARCHITECTURE structural OF fulladd IS 

    SIGNAL n1, n2, n3, n4: STD_LOGIC; 

BEGIN 

    g1:  ENTITY work.xor2(simple) PORT MAP (x,y,n1); 

    g2:  ENTITY work.xor2(simple) PORT MAP (n1,cin,sum); 

    g3:  ENTITY work.and2(simple) PORT MAP (x,y,n2); 

    g4:  ENTITY work.and2(simple) PORT MAP (x,cin,n3); 

    g5:  ENTITY work.and2(simple) PORT MAP (y,cin,n4); 

    g6:  ENTITY work.or3(simple) PORT MAP (n2,n3,n4,cout); 

END ARCHITECTURE structural; 
 

Again, suppose that the signals x, y and cin are initially at zero, so n1, n2, n3, n4, sum 

and cout are also at zero. Now suppose that x changes from 0 to 1. 

 

• All statements g1-g6 are scanned simultaneously, waiting for an event on an input 

signal. 

• There is an event on x, so g1, g3 and g5 re-evaluate their outputs. 

• Statement g1 computes a new value of n1. It changes from 0 to 1. There is an 

event on n1. 

• Statement g3 re-computes n2, but it still computes to 0. This is not a change, so 

there is no event on n2. 

• Similarly statement g4 computes a new value of n3. It is 0, which is not a change. 

• The event on n1 causes g2 to re-evaluate its output 

• A new value is computed for sum. It becomes 1, and an event has occurred on 

sum. 

• sum is not an input to any instantiation, and there are no pending events, so there 

is nothing left to do. Finish processing. 

 

The description of the 4-bit adder 
Finally, we can write a structural description of the four bit adder by building it from 

four full adders.
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LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

 

ENTITY adder IS 

    PORT ( x, y: IN STD_LOGIC_VECTOR(3 DOWNTO 0); 

        cin:  IN STD_LOGIC; 

        sum: OUT STD_LOGIC_VECTOR(3 DOWNTO 0); 

     cout: OUT STD_LOGIC); 

END ENTITY adder; 

 

ARCHITECTURE structural OF adder IS 

    SIGNAL carry: STD_LOGIC_VECTOR(2 DOWNTO 0); 

BEGIN 

    g0:  entity work.fulladd(structural)  

                PORT MAP (x(0),y(0),cin,sum(0),carry(0)); 

    g1:  entity work.fulladd(structural)  

                PORT MAP (x(1),y(1),carry(0),sum(1),carry(1)); 

    g2:  entity work.fulladd(structural)  

                PORT MAP (x(2),y(2),carry(1),sum(2),carry(2)); 

    g3:  entity work.fulladd(structural)  

                PORT MAP (x(3),y(3),carry(2),sum(3),cout); 

END ARCHITECTURE structural; 

 

Looking at this code, you should be able to guess that there is a more efficient way of 

writing it, using a kind of loop. Constructing loops that define arrays of hardware is 

beyond the scope of this module, but if you want to find out more, look up the FOR 

and GENERATE statements in the Active HDL online help. 

  

Summary 

In this lecture we have looked at how behavioural and structural descriptions are 

processed using concurrent execution. We have also seen how to build up structural 

descriptions from instantiation statements. 

 

You should now know... 
The meaning of the following: 

• Local signals 

• Event 

• Concurrent execution 

• Protected keyword 

• The work library 

• Instantiation and Instance 

• Positional association and Named association 


